Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Rigorous Science

Comments on What stellar number density would two galaxies have to have for another star to collide with the Sun during a galactic merger?

Post

What stellar number density would two galaxies have to have for another star to collide with the Sun during a galactic merger?

+2
−0

The Milky Way and Andromeda will collide a few billion years in the future. Stellar collisions will be rare because - as Douglas Adams put it - "Space is big. Really, really big." In the galactic disk, the number density of stars is quite low. Chances are good that the Solar System will not be ejected from the galaxy or collide with another star.

I'd like the Sun-like star in my planetary system in the Milky Way to collide with another star in Andromeda during the interaction between the two galaxies. Obviously, there's no way for there to be a 100% chance of this happening. I'd settle for a 90% chance, give or take.

What stellar number density would both galaxies have to have for there to be a ~90% chance of a collision? In other words, how many stars would the two galaxies have to have for a collision to be this probable?

As a start, I know that the collision rate for $N$ stars of mean velocity $v$ and gravitational cross-section $\sigma$ in a volume $V$ is $$\Gamma=\frac{N\sigma v}{V}$$ and so if the collision takes a time $\tau$, then the total fraction of stars that collide is $$f\approx\frac{2\Gamma\tau}{N}=\frac{2\sigma v\tau}{V}$$ However, this assumes that the stars are all essentially identical, with random motions in a uniform, unchanging space. During a galactic collision, however, the kinematics of the stars should change drastically throughout the interaction, so I'm not sure if the above approach is valid.

History
Why does this post require attention from curators or moderators?
You might want to add some details to your flag.
Why should this post be closed?

1 comment thread

General comments (1 comment)
General comments

Skipping 1 deleted comment.