Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs

Dashboard
Notifications
Mark all as read
Q&A

Could a laser using a "light capacitor" rather than a battery work?

+4
−1

The way this would work is by creating lasers & pumping them into a chamber where it can't escape. The power for the lasers to be created is made either with a generator or by charging using an external source of electricity. When a laser is fired the chamber is opened for a small amount of time allowing some light to escape. Where it can then be fired at a target. The near future materials are available. This is primary intended for use by ground forces on scales between that of a large rifle & that of a large tank. Could this work?

Why does this post require moderator attention?
You might want to add some details to your flag.
Why should this post be closed?

0 comment threads

1 answer

+4
−0

It seems you want to "store" energy as light by keeping it bouncing around inside a chamber.

No, that's not going to work, at least not for more than a few 10s of nanoseconds for a chamber the size of a "large tank".

Typical mirrors reflect maybe 90% of the light. Let's say you have really great mirrors that reflect 99% of the light. Each time light bounces off such a mirror it is attenuated to 0.99 of its incident energy.

That may sound good. Anything in nature being 99% efficient is usually very good. However, what you are missing is how often this factor of 0.99 will be applied. Light propagates thru vacuum (air is close enough) at 300 Mm/s. Let's say your chamber is 3 m across. That means light will hit a mirror 100 M times per second, or every 10 ns.

The above means that the light intensity is multiplied by 0.99 every 10 ns. In 100 ns the intensity will be 0.9910 = 90%. After 1 µs 0.99100 = 37%. After 10 µs 0.991000 = 0.004%, or less 1/23,000 of the original energy.

It should be obvious that the above is essentially an exponential decay. We can therefore find the effective time constant or half life to make it easy to visualize. Since ½ is about 0.9969, the half life is only 690 ns. Similarly, we can compute that the light is attenuated by a factor of 1000 every 6.9 µs. That means you're down to 1 millionth in twice that time, or about 14 µs.

And no, impossibly good mirrors isn't going to fix this, only lengthen the decay some. Let's say your mirrors (and the intervening light path) only attenuate by 0.9999 each bounce. Congratulations! You've extended the half life to 69 µs, and the 1/10 decay time to 230 µs. You're down to 1/1000 the original energy in 690 µs, and 1 millionth in 1.4 ms. That's still much less than the blink of an eye.

Why does this post require moderator attention?
You might want to add some details to your flag.

1 comment thread

Slow light (1 comment)

Sign up to answer this question »

This community is part of the Codidact network. We have other communities too — take a look!

You can also join us in chat!

Want to advertise this community? Use our templates!