Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Given the mass and composition of a planet, can one determine what the radius should be?

+0
−0

I'm trying to auto-generate random solar systems, and I'm basically just allocating 2% of the total system mass to planets (and moons). It provides interesting results, I always have a few gas giants, I often have many Mars-and-Mercury-massed planets.

But to calculate surface gravity, I need a radius.

This largely depends on the planet's composition... which can be quite varied (and depends quite a bit on where it formed, how it formed, etc).

But if I have a planet with 0.7 Earth mass, and 35% of that is iron/nickel (or siderophile), and 50% lithophile, and so on, can a decent estimate of radius be determined?

Do I need the breakdown on composition to be per atomic element, or can this give decent ballpark numbers if I have the mass as the ratio of lithophile/siderophile/chalcophile/volatiles?

My understanding of physics in this arena is... inadequate. I do not believe it's enough to simply look up the density of these elements on Wikipedia and calculate backwards from volume. Certainly an iron core compresses a bit such that the density is quite higher than that of an iron ingot on the surface?

History
Why does this post require attention from curators or moderators?
You might want to add some details to your flag.
Why should this post be closed?

This post was sourced from https://worldbuilding.stackexchange.com/q/125543. It is licensed under CC BY-SA 4.0.

0 comment threads

0 answers

Sign up to answer this question »