Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Earth-like Moon around the Gas Giant. Eclipse length?

+0
−0

Worldbuilder in dire need!

I'm trying to figure out the eclipse length of a habitable Earth-like moon that is rotating around a gas giant. The story that I work on is centered on the Earth-like moon, but math was never my strongest suit and I'm in dire need of some mathematicians, astronomers or science enthusiasts.

I wanted the Earth-like moon to be exactly the same as our own Earth. Well, almost.

Basic Info:

  • Year (one full orbit of the gas giant around the Sun) has 256 days.
  • A day (1 full rotation around its own axis) of the Earth-like moon is 24 hours.
  • One full orbit of the Earth-like moon around the Gas Giant = I wanted it to be precisely 8 days (192 hours)

My idea was to introduce 8th day in a week, one that people would call "Longnight" which would basically be a whole day without Sun due to the eclipse from the gas giant.

  • Size of the gas giant and distance of the two bodies aren't specified. (Since I have very limited knowledge of the astrophysics. Feel free to adjust.) The eclipse (8th day) probably won't take as much as 24 hours, but I'll appreciate anything that can give at least a bit of "long-night, a day full of darkness" feel to it, even if it takes another, 9th day a week.

(Optional: It's a world full of magic and divine beings, so if the distances or other aspects don't correlate with the real physics, we can ignore some laws and say "It's magic. Gods are keeping the moon in orbit/atmosphere together." or something like that.)

I'm just really curious about the eclipse length and the ways it could be done possible. Thank you for all the ideas.

History
Why does this post require attention from curators or moderators?
You might want to add some details to your flag.
Why should this post be closed?

This post was sourced from https://worldbuilding.stackexchange.com/q/71033. It is licensed under CC BY-SA 3.0.

0 comment threads

1 answer

+0
−0

For the TL;DR, see the bottom of this answer.

Okay, so first of all, the orbital period of the gas giant around its star is 256×24 hours, and I'd like to establish the distance from the planet to its star. Since you haven't specified anything about the star itself, I'll go with our Sun for simplicity's sake. Also for simplicity's sake (or to retain everybody's sanity, including my own) I will approach this as two two-body problems rather than a three-body problem. This reduces the attainable precision, but greatly simplifies the math. For a representative gas giant, I'll use Jupiter.

As an approximation for the planet's orbit around its star, we can use the formula for a small body orbiting a central body:

r=μT24π23

where:

  • r is the orbit's semi-major axis in meters (note: this is not the same thing as the orbital altitude, but can be approximated as the orbital radius)
  • μ is the standard gravitational parameter, μ=GM
    • G is the gravitational constant, in units relevant here 6.67408×1011 m3kg1s2
    • M is the mass of the central body (in this case, the star) in kg
    • μSun1.327×1020 m3 s2
  • T is the orbital period in seconds

We know that the desired T=256×24×60×60=22118400 seconds. Let's plug all those values in and see what comes out:

r=1.327×1020×2211840024π231.644442×103331.1803375×1011

So your planet orbits at a distance of about 1.2×108 km, or 120 million km, to its star. This is comparable to Venus' orbit around the Sun (Venus' semi-major axis is about 1.08×108 km, with an orbital period of 224.7×24 hours). That's awfully close for a gas giant in anything resembling our solar system, but it's the only way to get the planet orbital period you ask for while keeping the star Sun-like. You could twiddle the knob for star mass (M=MSun, influencing μSun above) until you are happy with the outcome; for inspiration, look no further than to Wikipedia's list of main sequence star example parameters which gives the stars' mass in terms of solar masses, from which you can calculate the corresponding value for μ.

The arc length of a circle sector is given by L=θ×r where θ is the angle subtended. We know the approximate arc length (the diameter of the Sun: twice its radius of 695700 km) and distance (1.2×108 km) and want angle subtended, so we get 2×695700 km=θ×1.2×108 kmθ=2×6957001.2×108=0.011595

Because θ comes out in radians, we multiply by 57.296° to get the angle subtended in degrees, which turns out to be 39.86 arcminutes or 0.664 degrees. A quick check against Wikipedia gives the Sun's angle subtended from Earth (at an orbital radius of 1.5×108 km) as 31.6-32.7 arcminutes, so while possibly not perfect, this is well within the ballpark. The same calculation for an orbital radius of 1.5×108 km gives 31.9 arcminutes, squarely in the range given.

You specified the orbital period of the moon around the gas giant to be 192 hours, or 192×3600=691200 seconds. We can use the vis-viva equation to calculate the corresponding orbital radius. We have v2=μ(2r1a)

For a circular orbit, r=a (orbital radius is equal to the semi-major axis of the orbit) and thus (2πrT)2=μ(2r1r)

We have μJupiter1.267×1017 m3 s2 and T=691200 s. By rearranging, we get r=μ(T2π)231153080 km

So the Earth-like moon orbits the gas giant at an orbital radius of about 1.15 million km, because that's the orbital radius (for a perfectly circular orbit, one with eccentricity e=0 or semi-major axis equal to semi-minor axis) that corresponds with the desired orbital period. This happens to be very similar to the radius of the orbit of Ganymede (which is 1.07M km, and an eccentricity of about 0.0013 in case you wondered), providing a nice sanity check for the result; Ganymede orbits Jupiter in 171 hours, only slightly less than your desired 192 hours, so at least to a first order approximation this checks out.

The formula for computing the length of the umbra (central shadow) of an eclipse is L=r×RoRsRo where r is the distance from the star to the occulting object (in our case, the gas giant), Ro is the radius of the occulting object, and Rs is the radius of the star. We thus have a shadow cone of length (where all distance and size values are in kilometers) L=1.2×108×71492695700714928.58×101262420813.74×106

Because 1.15×106<13.74×106, the moon passes through the shadow cone cast by the planet, so we have a full eclipse (the moon passes through the umbra cast by the planet). Now, for how long does the eclipse last?

By considering the shadow cone to be a triangle with the base length of the diameter of the planet and the height calculated above, we can use Pythagoras' theorem to calculate the length of the resulting hypotenuse. (This turns out to be almost identical to the height, approximately 1.37400×107 versus the height approximately 1.37439×107 km.) We can then apply the intercept theorem which states that when dividing a triangle by a line parallell to the base of the triangle, the length of the new base line is to the original base line as the hypotenuse of the part of the triangle is to the total hypotenuse length. By approximating the required inner height as the orbital radius of the moon around the gas giant, we end up with DE2×71492=1150000137400000.0836971 where DE is the length of the line connecting the edges of the triangle at the orbital radius of the moon. Hence the occluded path for the moon is approximately 2×714920.0836971.708×106 km. (This is really the base of a circle segment where the moon traces the circle segment, but the difference is small enough to be negligible at these levels of precision.)

The circumference of a circle of radius 1.15×106 km is 2πr=2π×1.15×1067.226×106 km

Thus, passing through the umbra cast by the planet takes 1.708×1067.226×1060.2364 of the orbital period of the moon. Multiplying by the orbital period of 192 hours gives us a duration of 45.4 hours within the total eclipse zone (the umbra).

Note that there are three things I am actually ignoring in the calculations above. First, I'm positing that all bodies are orbiting within your solar system's ecliptic; if their orbits are inclined relative to one another, you need to take the angle at which they are orbiting (the inclination) into account. Doing so complicates the math a fair bit for no significant gain, as bodies that form naturally within a solar system are likely to orbit close to the ecliptic. I'm leaving that entirely as an exercise for the reader.

Second, I'm ignoring the planet's orbital motion around the star. When the (Earth-like) moon is orbiting around the (gas giant) planet, and the (gas giant) planet is orbiting around the star, this is going to have the effect of either making the apparent eclipse slightly shorter or slightly longer. (Which it happens to become depends on the relative direction of the orbital movement.) I'm too lazy to account for this, so I just don't, but it shouldn't be more than some trigonometry if you really care to do that part of the math yourself.

Third, I'm ignoring the fact that the Earth-sized moon is going to tug a little at the planet. The barycenter of the system won't actually be at the planet's center, but a little outside of the planet's center, which will cause the two to be joined in somewhat of an orbital dance. This is very similar to how, in our solar system, Jupiter perturbs the Sun, despite being only 11047 the mass, or how Earth's moon perturbs Earth.

TL;DR:

One set of values that match your criteria are:

  • Star mass 1.99×1030 kg (1 solar mass) (by choice)
  • Star diameter 1391400 km (1 solar diameter) (by choice)
  • Planet mass 1.8986×1027 kg (1 Jupiter mass) (by choice)
  • Planet diameter 142984 km (1 Jupiter diameter) (by choice)
  • Planet orbital period around star 256×86400 seconds (by decree)
  • Planet orbital radius around star 1.2×108 km
  • Moon orbital period around planet 192×3600 seconds (by decree)
  • Moon orbital radius around planet 1.15×106 km
  • Eclipse length 45.4×3600 seconds

There are many other sets of values that can match your criteria. If you aren't happy with the above, just pick different values for the masses and radii involved, and recompute; there is nothing magical about the sizes of Sun or Jupiter. Just don't forget to change the value of μ accordingly!

History
Why does this post require attention from curators or moderators?
You might want to add some details to your flag.

0 comment threads

Sign up to answer this question »